How is water-use efficiency of terrestrial ecosystems distributed and changing on Earth?
A better understanding of ecosystem water-use efficiency (WUE) will help us improve ecosystem management for mitigation as well as adaption to global hydrological change. Here, long-term flux tower observations of productivity and evapotranspiration allow us to detect a consistent latitudinal trend in WUE, rising from the subtropics to the northern high-latitudes. The trend peaks at approximately 5100°N, and then declines toward higher latitudes. These ground-based observations are consistent with global-scale estimates of WUE. Global analysis of WUE reveals existence of strong regional variations that correspond to global climate patterns. The latitudinal trends of global WUE for Earth's major plant functional types reveal two peaks in the Northern Hemisphere not detected by ground-based measurements. One peak is located at 2000°~3000°N and the other extends a little farther north than 5100°N. Finally, long-term spatiotemporal trend analysis using satellite-based remote sensing data reveals that land-cover and land-use change in recent years has led to a decline in global WUE. Our study provides a new framework for global research on the interactions between carbon and water cycles as well as responses to natural and human impacts.
Global distribution of multiyear mean annual GPP, ET and WUE in the study periond
Trend analysis of time-series global annual mean WUE for 2000-2013
Eddy correlation systems in the field observations
Tang Xuguang, Hengpeng Li, Ankur R. Desai, Zoltan Nagy, Juhua Luo, Thomas E. Kolb, Albert Olioso, Xibao Xu, Li Yao, Werner Kutsch, Kim Pilegaard, Barbara Köstner, Christof Ammann. How is water-use efficiency of terrestrial ecosystems distributed and changing on Earth? Nature Scientific Reports. 2014, 4:7483.
附件